عنوان
|
بازسازی تصویر مبتنی بر شبکه متخاصم مولد هدایت شده توسط اطلاعات اضافه تعریف شده توسط کاربر
|
نوع پژوهش
|
پایان نامه
|
کلیدواژهها
|
بازسازی تصویر، یادگیری عمیق، انکودر خودکار، شبکه های متخاصم مولد.
|
چکیده
|
بازگرداندن ناحیه آسیب دیده در تصاویر دیجیتال (بازسازی تصویر) می تواند به عنوان یک مشکل دشوار در نظر گرفته شود که بر اساس شدت آسیب به نسبت سخت تر می شود. در چند سال اخیر پیشرفت هایی در مقابله با این موضوع از طریق استفاده از مدل های یادگیری عمیق صورت گرفته است. در این مطالعه با توجه به کاربردهای موفق GAN ها در زمینه های مختلف، رویکرد جدیدی برای بازسازی تصویر ارائه شده است. الگوریتم پیشنهادی شامل یک مولد و یک تمایز عمومی است. ژنراتور مسئول بازیابی ناحیه از دست رفته است و تمایزکننده عمومی به تشخیص درست بودن یا نبودن ناحیه تعمیر مربوط می شود. معماری ژنراتور از دو انکودر خودکار تشکیل شده است. علاوه بر این، Wasserstein GAN برای اطمینان از ثبات تمرین استفاده می شود. به عنوان تصویر ورودی، یک تصویر نماد 32 در 32 نیز برای هدایت معنایی ژنراتور استفاده می شود و سپس با تصویر خراب برای پر کردن قسمت یا مناطق از دست رفته بدون از دست دادن برخی اشیاء موجود یا پیش بینی اشیاء یا اشکال ناخواسته، الحاق می شود. تصویر راهنما می تواند توسط کاربر برنامه پیشنهاد شود یا موارد دیگری مانند واترمارک در نظر گرفته شود. این روش از نظر کمی و کیفی با مدل های پیشرفته ای که از شبکه متخاصم مولد استفاده می کنند مقایسه می شود. این رویکردها می توانند ساختارها و بافت های بصری قانع کننده ای ایجاد کنند، اما اغلب ساختارهای تغییر شکل یافته، بافت های تار یا اشیایی از دست می دهند که با مناطق اطراف همگام نیستند. نتایج ارائه شده روی مجموعه داده CelebA-HQ نشان می دهد که مدل پیشنهادی می تواند با پیکسل های از دست رفته در مقیاس بزرگ مقابله کند و نتایج واقعی ایجاد کند.
|
پژوهشگران
|
محسن رمضانی (استاد راهنما)، ریکه وت ابراهیم محمد (دانشجو)، فردین اخلاقیان طاب (استاد راهنما)
|