عنوان
|
پیش بینی پتانسیل آلودگی کادمیوم آب های زیر زمینی سنندج با استفاده از مدل شبکه عصبی
|
نوع پژوهش
|
طرح پژوهشی خاتمه یافته
|
کلیدواژهها
|
کادمیوم، آب های زیرزمینی، رگرسیون چندگانه، شبکه عصبی
|
چکیده
|
کادمیوم یکی از فلزات سنگین است که در صورت انتشار در محیط زیست می تواند خطرات متعددی را برای سلامت مردم به دنبال دانشته باشد. . هدف از این پژوهش برآورد پتانسیل آلودگی کادمیوم آب های زیرزمینی سنندج با استفاده از شبکه عصبی است. در این راستا از بین چاه های مجوزدار شهرستان سنندج 35 چاه با در نظر گرفتن حوضه آبریز، پراکندگی مناسب و ساختار زمین شناختی متفاوت انتخاب شد و نمونه برداری انجام شد. برای بررسی رابطه بین ویژیگی های خاک اطراف چاه و نمونه های آب چاه ها، از عمق 0-20 سانتی متری خاک سطحی بالادست چاه ها نمونه های خاک به صورت مرکب جمع آوری شد. خاک های جمع آوری شده در دمای آزمایشگاه خشک و برای آنالیز آماده شدند. غلظت کادمیوم نمونه های آب و خاک با دستگاه جذب اتمی به روش کوره انداز ه گیری شد. ویژگی های فیزیکی و شیمیای خاک شامل: آرسنیک، آرسنات، آرسنیت، فسفات، نیترات، آهن کل، آهن بی شکل، منگنز کل، منگنز بی شکل، درصد رس، درصد شن، درصد سیلت، ماده آلی خاک،pH وCEC اندازه گیری شدند. در مرحله بعد تمامی داده های آب و خاک نرمال شد و مدل های رگرسیون چندگانه و شبکه عصبی مصنوعی برای بررسی رابطه بین پارامترهای ذکر شده خاک و آرسنیک موجود درآب مورد ارزیابی قرار گرفت. نتایج مدل رگرسیون چندگانه در مرحله آموزش 38/0R= و 407/0RMSE= و 166/0MAE= و در مرحله آزمون مقادیر 2/0R= و 423/0RMSE= و 179/0MAE= به دست آمد. نتایج مدل شبکه عصبی در مرحله آموزش 99/0R= و 006/0RMSE= و 00004/0MAE= در مرحله آزمون مقادیر 85/0R= و 764/0RMSE= و 584/0MAE= به دست آمد. مقایسه ی دقت مدل های رگرسیون چندگانه و شبکه عصبی در مرحله آموزش و آزمون نشان داد که شبکه عصبی مصنوعی دارایی دقت بیشتر و خطای کمتری در برآورد پتانسیل آلودگی آرسنیک آب های زیرزمینی نسبت به مدل رگرسیون چندگانه است.
|
پژوهشگران
|
فرشید قربانی چقامارانی (همکار)، جمیل امان اللهی (مجری اول)
|