| 1 |
Urban flood susceptibility mapping using deep and machine learning algorithms as a management tool: A case study of Sanandaj City, Iran
|
Ecological Indicators
|
| 2 |
A comparison between different machine learning techniques for predicting heating energy consumption for residential buildings in a cold climate
|
Energy Efficiency
|
| 3 |
A novel hybrid machine learning approach for δ13C spatial prediction in polish hard-water lakes
|
Ecological Informatics
|
| 4 |
شبیه سازی آبشستگی پشت دیواره های ساحلی به روش لاگرانژی با استفاده از مدل رئولوژی (I)𝜇
|
علوم آب و خاک
|
| 5 |
نفوذپذیری آب به داخل خاک در بخشهای مختلف یک دامنه در فصول مختلف سال
|
پژوهشهای حفاظت آب و خاک
|
| 6 |
Developing a Semi-Supervised Strategy in Time Series Mapping of Wetland Covers: A Case Study of Zrebar Wetland, Iran
|
Earth Systems and Environment
|
| 7 |
پیشبینی حساسیتپذیری سیلاب شهری با استفاده از مدل ترکیبی فازی- دلفی در شهر سنندج
|
مدل سازی و مدیریت آب و خاک
|
| 8 |
A systematic review of Muskingum flood routing techniques
|
Hydrological Sciences Journal
|
| 9 |
Improving the performance of artificial intelligence models using the rotation forest technique for landslide susceptibility mapping
|
International Journal of Environmental Science and Technology
|
| 10 |
Performance improvement of the linear muskingum flood routing model using optimization algorithms and data assimilation approaches
|
Natural Hazards
|
| 11 |
Landslide Susceptibility Mapping in a Mountainous Area Using Machine Learning Algorithms
|
Remote Sensing
|
| 12 |
Spatial Prediction of Landslides Using Hybrid Multi-Criteria Decision-Making Methods: A Case Study of the Saqqez-Marivan Mountain Road in Iran
|
Land
|
| 13 |
Rangeland species potential mapping using machine learning algorithms
|
ECOLOGICAL ENGINEERING
|
| 14 |
Towards robust smart data-driven soil erodibility index prediction under different scenarios
|
Geocarto International
|
| 15 |
ارزیابی حساسیت زمین لغزش با استفاده از مدل جدید ترکیبی الگوریتم مبنا (مطالعه موردی: شهرستان کامیاران، استان کردستان)
|
پژوهش هاي ژئومورفولوژي كمي
|
| 16 |
Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?
|
JOURNAL OF HYDROLOGY
|
| 17 |
پیش بینی حساسیت فرسایش خندقی و مخاطرات آن در حوضۀ آبخیز کلوچه بیجار با استفاده از مدل های پیش بینی کنندۀ مکانی
|
مديريت مخاطرات محيطي (دانش مخاطرات سابق)
|
| 18 |
پیش بینی مکانی زمین لغزش های سطحی با استفاده از الگوریتم درخت تصمیم متناوب (مطالعۀ موردی: مسیر ارتباطی یوزیدر- دگاگا در استان کردستان)
|
مهندسي اكوسيستم بيابان
|
| 19 |
Application of a Novel Hybrid Machine Learning Algorithm in Shallow Landslide Susceptibility Mapping in a Mountainous Area
|
Frontiers in Environmental Science
|
| 20 |
A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran
|
SENSORS
|
| 21 |
Predicting sustainable arsenic mitigation using machine learning techniques
|
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
|
| 22 |
Landslide susceptibility modeling based on remote sensing data and data mining techniques
|
Environmental Earth Sciences
|
| 23 |
A comparison study on the quantitative statistical methods for spatial prediction of shallow landslides (case study: Yozidar-Degaga Route in Kurdistan Province, Iran)
|
Environmental Earth Sciences
|
| 24 |
Swarm intelligence optimization of the group method of data handling using the cuckoo search and whale optimization algorithms to model and predict landslides
|
APPLIED SOFT COMPUTING
|
| 25 |
Efficiency of artificial neural networks in determining scour depth at composite bridge piers
|
International Journal of River Basin Management
|
| 26 |
Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning
|
SCIENCE OF THE TOTAL ENVIRONMENT
|
| 27 |
A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers
|
Geocarto International
|
| 28 |
پهنه بندی خطر سیلاب در شهر سنندج با استفاده از مدل های ترکیبی شاخص آماری و تابع شواهد قطعی
|
مطالعات شهري
|
| 29 |
Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm
|
Geoscience Frontiers
|
| 30 |
Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms
|
Remote Sensing
|
| 31 |
Deep learning neural networks for spatially explicit prediction of flash flood probability
|
Geoscience Frontiers
|
| 32 |
A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping
|
Engineering Applications of Artificial Intelligence
|
| 33 |
Performance Evaluation and Comparison of Bivariate Statistical-Based Artificial Intelligence Algorithms for Spatial Prediction of Landslides
|
ISPRS International Journal of Geo-Information
|
| 34 |
New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed
|
FORESTS
|
| 35 |
A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling
|
Environmental Earth Sciences
|
| 36 |
Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO)
|
Applied Sciences-Basel
|
| 37 |
Towards an Ensemble Machine Learning Model of Random Subspace Based Functional Tree Classifier for Snow Avalanche Susceptibility Mapping
|
IEEE Access
|
| 38 |
GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran
|
Remote Sensing
|
| 39 |
Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran
|
Applied Sciences-Basel
|
| 40 |
Daily Water Level Prediction of Zrebar Lake (Iran): A Comparison between M5P, Random Forest, Random Tree and Reduced Error Pruning Trees Algorithms
|
ISPRS International Journal of Geo-Information
|
| 41 |
Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
|
International Journal of Environmental Research and Public Health
|
| 42 |
Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms
|
FORESTS
|
| 43 |
Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment
|
International Journal of Environmental Research and Public Health
|
| 44 |
Hybridized neural fuzzy ensembles for dust source modeling and prediction
|
ATMOSPHERIC ENVIRONMENT
|
| 45 |
Mapping of Groundwater Spring Potential in Karst Aquifer System Using Novel Ensemble Bivariate and Multivariate Models
|
Water
|
| 46 |
Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran
|
FORESTS
|
| 47 |
Hybrid Computational Intelligence Methods for Landslide Susceptibility Mapping
|
Symmetry-Basel
|
| 48 |
A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers
|
Sustainability
|
| 49 |
GIS-Based Gully Erosion Susceptibility Mapping: A Comparison of Computational Ensemble Data Mining Models
|
Applied Sciences-Basel
|
| 50 |
Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM+ Images
|
International Journal of Environmental Research and Public Health
|
| 51 |
Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution
|
SCIENCE OF THE TOTAL ENVIRONMENT
|
| 52 |
A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India
|
International Journal of Sediment Research
|
| 53 |
Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis
|
The Open Construction & Building Technology Journal
|
| 54 |
پهنه بندی حساسیت زمین لغزش با سامانه اطلاعات جغرافیایی ومقایسه ی کارایی روش های رگرسیون لجستیک و نسبت فراوانی در(مطالعه موردی: حوزه ی آبخیز چشمیدر، کردستان)
|
مجله كاربرد سيستم اطلاعات جغرافيايي و سنجش از دور در برنامه ريزي
|
| 55 |
پیش بینی مکانی زمین لغزش های سطحی با استفاده از مدل های آماری و یادگیری ماشین (مطالعۀ موردی: حوضه سرخون)
|
مرتع و آبخيزداري (منابع طبيعي ايران)-دانشگاه تهران
|
| 56 |
بررسی مقایسه ای مدل های ماشین پشتیبان بردار و لجستیک درختی برای ارزیابی حساسیت زمین لغزش-مطالعه موردی: شهرستان کامیاران، استان کردستان
|
فصل نامه جغرافياي طبيعي لار دانشگاه آزاد لارستان
|
| 57 |
Flood susceptibility assessment in Hengfeng area coupling adaptiveneuro-fuzzy inference system with genetic algorithm and differential evolution
|
SCIENCE OF THE TOTAL ENVIRONMENT
|
| 58 |
ارزیابی حساسیت زمین لغزش با استفاده از الگوریتم ماشین پشتیبان بردار (مطالعه موردی: شهرستان کامیاران، استان کردستان)
|
پژوهش هاي ژئومورفولوژي كمي
|
| 59 |
SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors
|
Geoscience Frontiers
|
| 60 |
Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree
|
Geocarto International
|
| 61 |
A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping
|
Water
|
| 62 |
SEVUCAS: A Novel GIS-Based Machine Learning Software for Seismic Vulnerability Assessment
|
SENSORS
|
| 63 |
Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier
|
Remote Sensing
|
| 64 |
A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment
|
Geocarto International
|
| 65 |
A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran)
|
SENSORS
|
| 66 |
Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model
|
Remote Sensing
|
| 67 |
Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms
|
Sustainability
|
| 68 |
Development of a Novel Hybrid Intelligence Approach for Landslide Spatial Prediction
|
Applied Sciences-Basel
|
| 69 |
Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA)
|
Geocarto International
|
| 70 |
Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling
|
Bulletin of Engineering Geology and the Environment
|
| 71 |
Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm
|
JOURNAL OF ENVIRONMENTAL MANAGEMENT
|
| 72 |
A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment
|
Geocarto International
|
| 73 |
Land cover change mapping using a combination of Sentinel-1 data and multispectral satellite imagery: A case study of Sanandaj County, Kurdistan, Iran
|
Applied Ecology and Environmental Research
|
| 74 |
Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling
|
FORESTS
|
| 75 |
Landslide Susceptibility Modeling Based on GIS and Novel Bagging-Based Kernel Logistic Regression
|
Applied Sciences-Basel
|
| 76 |
A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods
|
JOURNAL OF HYDROLOGY
|
| 77 |
Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution
|
CATENA
|
| 78 |
Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach
|
WATER RESOURCES MANAGEMENT
|
| 79 |
Shallow Landslide Prediction Using a Novel Hybrid Functional Machine Learning Algorithm
|
Remote Sensing
|
| 80 |
Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms
|
SCIENCE OF THE TOTAL ENVIRONMENT
|
| 81 |
Sinkhole susceptibility mapping: a comparison between Bayes-based machine learning algorithms
|
LAND DEGRADATION & DEVELOPMENT
|
| 82 |
Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches
|
CATENA
|
| 83 |
Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods
|
Natural Hazards
|
| 84 |
مقایسه مدل های رگرسیون لجستیک و بیزین رگرسیون لجستیک به منظور پیش بینی مکانی حرکت های توده ای استان
|
پژوهش هاي ژئومورفولوژي كمي
|
| 85 |
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
|
SENSORS
|
| 86 |
Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods
|
Scientific Reports
|
| 87 |
Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia
|
Remote Sensing
|
| 88 |
A Novel Integrated Approach of Relevance Vector Machine Optimized by Imperialist Competitive Algorithm for Spatial Modeling of Shallow Landslides
|
Remote Sensing
|
| 89 |
New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling
|
Water
|
| 90 |
Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms
|
SENSORS
|
| 91 |
Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
|
JOURNAL OF ENVIRONMENTAL MANAGEMENT
|
| 92 |
A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran
|
SCIENCE OF THE TOTAL ENVIRONMENT
|
| 93 |
A novel hybrid artificial intelligence approach based on the rotation forest ensemble and na€ ıve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China
|
Geomatics, Natural Hazards and Risk
|
| 94 |
A Novel Hybrid Artificial Intelligence Approach for Flood Susceptibility Assessment
|
ENVIRONMENTAL MODELLING & SOFTWARE
|
| 95 |
Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio
|
Environmental Earth Sciences
|
| 96 |
A comparative study between popular statistical and machine learning methods for simulating volume of landslides
|
CATENA
|
| 97 |
ارزیابی مدل رگرسیون لجستیک و منطق فازی در تهیه نقشه حساسیت به زمین لغز شهای شهر سنندج
|
پژوهش هاي آبخيزداري (پژوهش و سازندگي سابق)
|
| 98 |
معرفی یک مدل جدید ترکیبی الگوریتم مبنا به منظور پیش بینی حساسیت زمین لغزشهای سطحی اطراف شهر بیجار
|
جغرافيا و توسعه
|
| 99 |
Shallow landslide susceptibility assessment using a novel hybrid intelligence approach
|
Environmental Earth Sciences
|
| 100 |
مقایسه روش های شبکه عصبی مصنوعی و رگرسیون چند متغیره در تخمین مقادیر آرسنیک خاک (مطالعه موردی :استان کردستان، ایران)
|
پژوهش هاي آبخيزداري (پژوهش و سازندگي سابق)
|
| 101 |
پهنه بندی احتمال حضور آرسنیک در برخی خاک های آهکی دشت قروه با استفاده از رگرسیون لجستیک
|
پژوهش هاي خاك (علوم خاك و آب)
|
| 102 |
مقایسه مدل های رگرسیون لجستیک و نسبت فراوانی در پهنه بندی خطر ریزش سنگ
|
مجله منابع طبيعي ايران
|
| 103 |
A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran
|
Natural Hazards
|
| 104 |
برآورد هیدروگراف واحد مصنوعی با استفاده از تحلیل منطقه ای سیلاب و پارامترهای ژئومورفولوژیکی (مطالعه موردی: حوضه های آبخیز مارنج و کانی سواران، کردستان)
|
علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی سابق)
|