عنوان
|
On the codimension of the variety of symmetric matrices with multiple eigenvalues
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
Symmetric matrices, Algebraic equation, Codimension, Eigenvalues
|
چکیده
|
According to a result of Wigner and von Neumann, the dimension of the set M of n × n real symmetric matrices with multiple eigenvalues is equal to N −2, where N = n(n+1)/2. This value is determined by counting the number of free parameters in the spectral decomposition of a matrix. We show that the same dimension is obtained if M is interpreted as an algebraic variety.
|
پژوهشگران
|
منصور دانا (نفر اول)، خ. د ایکراموف (نفر دوم)
|