عنوان
|
A numerical comparison of two minimal residual methods for linear polynomials in unitary matrices
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
Krylov subspace methods, minimal residual methods, normal matrices, unitary matrices
|
چکیده
|
Two minimal residual methods for solving linear systems of the form $(\alpha U+\beta I)x=b$ where $U$ is a unitary matrix, are compared numerically. The first method uses conventional Krylov subspaces, while the second involves generalized Krylov subspaces. Experiments favor the second method if $|\alpha|>|\beta|$. Moreover, the greater the ratio $|\alpha|/|\beta|$, the higher the superiority of the second method.
|
پژوهشگران
|
منصور دانا (نفر اول)، خ. د ایکراموف (نفر دوم)
|