مشخصات پژوهش

صفحه نخست /Probabilistic Multi-Objective ...
عنوان Probabilistic Multi-Objective Optimal Power Flow: A Grey Wolf Optimizer Approach Considering Load and Wind Turbine Uncertainties
نوع پژوهش مقاله ارائه شده کنفرانسی
کلیدواژه‌ها Optimal Power Flow, Wind Turbine , Uncertainties
چکیده This article presents a novel approach to tackle the challenge of Probabilistic Multi-Objective Optimal Power Flow (PMOOPF) by utilizing the Grey Wolf Optimizer (GWO). The methodology incorporates uncertainties related to both load and wind turbine generation, modeling load uncertainty with a normal distribution and wind speed uncertainty with a Weibull distribution and employs Monte Carlo Simulation (MCS) to establish the probability distribution function (PDF) for both the load and power generated by the hybrid sources. The PMOOPF problem aims to concurrently minimize thermal generation costs, real power losses, and maximize voltage stability. The proposed approach is tested on the IEEE 26-bus system, and the outcomes are compared with the Gravitational Search Algorithm (GSA). The contribution of this paper lies in effectively addressing uncertainties in load and wind turbine generation, incorporating diverse PMOOPF objectives, and employing the GWO optimization technique. The simulation results demonstrate the method's efficacy and efficiency in achieving economic and technical benefits.
پژوهشگران شیوا امینی (نفر اول)، ایننوسنت کاموا (نفر دوم)، شب بو نحوی (نفر سوم)، هیمن گل پیرا (نفر چهارم)