مشخصات پژوهش

صفحه نخست /Homotopic deviation theory ...
عنوان Homotopic deviation theory for regular matrix pencils
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Homotopic deviation; matrix pencil; resolvent; frontier point; critical point; limit point; Weierstrass structure
چکیده ‎We generalize the theory of homotopic deviation of square (complex) matrices to regular matrix pencils‎. ‎To this end‎, ‎we study the existence and the analyticity of the resolvent of the matrix pencils whose matrices are under homotopic deviation with the deviation parameter $t \in \mathbb{C}$‎. ‎Moreover‎, ‎we investigate and identify the limits of both the resolvent and the spectrum of the deviated matrix pencils‎, ‎as $| t | \to \infty$‎. ‎We also study the special cases where $t$ tends to the eigenvalues of the related matrix pairs‎. ‎We use the notions and the results of the generalized homotopic deviation theory to analyze the Weierstrass structure of the deviated matrix pencils under two different assumptions‎, ‎in particular‎, ‎either the eigenvalues of the deviated matrix pencils are independent parameters‎, ‎or the deviation parameter $t$ is an independent parameter‎. ‎Numerical examples illustrate and support the theoretical results‎.
پژوهشگران مراد احمدنسب (نفر اول)، پانایوتیس ج. پساراکوس (نفر دوم)