عنوان
|
خوشه بندی استوار بر اساس برآورد چگالی هسته
|
نوع پژوهش
|
پایان نامه
|
کلیدواژهها
|
K –Means، نقاط نویز، روش خوشه بندی براساس چگالی، روش، DBSCAN، روش OPTICS، خوشه بندی پارامتری، واکنش زنجیری، روش انتقال میانگین، روش DPC، روش . KDE
|
چکیده
|
یکی از مهم ترین کارها در دادهکاوی، خوشه بندی داده های موجود در یک مجموعه داده است. این تکنیک بهدنبال کشف ساختارهایی است که منجر به گروه بندی نمونه های موجود در یک مجموعه داده می شوند، بهگونه ای که نمونه های مشابه، درون دسته هایی که بیشترین شباهت را با هم داشته قرار می گیرند، در حالی که دارای تفاوتی قابل قبول با نمونه های سایر گروه ها هستند. الگوریتم های خوشه بندی را می توان به چند دسته کلی الگوریتم های خوشه بندی مبتنی بر مرکز، مبتنی بر اتصال، مبتنی بر توزیع، مبتنی بر گرید و مبتنی بر چگالی تقسیم نمود. از آنجا که روش های خوشه بندی مبتنی بر فاصله دارای معایبی از جمله موارد زیر هستند: ‐1مشخص کردن تعداد خوشه ها در ابتدای اجرای الگوریتم ‐2نامناسب بودن روش برای اشکال غیر محدب و چگالی های مختلف ‐3مشکل واکنش زنجیری‐4پیچیدگی زمانی و مکانی ‐5شناسایی نکردن نقاط نویز بهطور کامل ‐6ایجاد خوشه های نامطلوب؛ زیرا اساس کار این روش ها فاصله بین نمونههاست. برای غلبه بر این مشکلات از روش های خوشه بندی براساس چگالی استفاده می کنیم که بهینه تر عمل می کنند در این پایان نامه ابتدا بهمرور روش های خوشه بندی مطرح پرداخته و چند الگوریتم از هر روش را معرفی می کنیم که در ادامه روش ها و الگوریتم های موجود از نظر برخی از پارامترها مقایسه شده و به بررسی مزایا و معایب هر الگوریتم پرداخته شدهاست. در نهایت الگوریتم های خوشه بندی براساس چگالی را روی چندین داده مختلف با استفاده از نرمافزار Rاجرا می کنیم و میزان کارا بودن هر الگوریتم را محاسبه می کنیم.
|
پژوهشگران
|
کورش دادخواه (استاد راهنما)، الهام رضایی (دانشجو)
|