مشخصات پژوهش

صفحه نخست /Characterizing Jordan ...
عنوان Characterizing Jordan Derivable Maps on Triangular Rings by Local Actions
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Derivation, Jordan derivation, triangular algebra, nest algebra
چکیده Suppose that T = Tri(A; M; B) is a 2-torsion free triangular ring, and S = (A; B) j AB = 0; A; B 2 T [ (A; X) j A 2 T ; X 2 fP; Qg ; where P is the standard idempotent of T and Q = I −P. Let δ : T ! T be a mapping (not necessarily additive) satisfying (A; B) 2 S ) δ(A ◦ B) = A ◦ δ(B) + δ(A) ◦ B; where A ◦ B = AB + BA is the Jordan product of T . We obtain various equivalent conditions for δ, specifically, we show that δ is an additive derivation. Our result generalizes various results in these directions for triangular rings. As an application, δ on nest algebras are determined
پژوهشگران هوگر قهرمانی (نفر اول)، محمد نادر قصیری (نفر دوم)، طاهره رضایی (نفر سوم)