مشخصات پژوهش

صفحه نخست /پدیده های ریاضیاتی قابل توجه ...
عنوان پدیده های ریاضیاتی قابل توجه در یادگیری عمیق
نوع پژوهش پایان نامه
کلیدواژه‌ها یادگیری ماشین، یادگیری عمیق ، درونیابی ، بیش پارامتری
چکیده در دهۀ گذشته، نظریۀ ریاضی یادگیری ماشین به مراتب از پیشرفت های شبکه های عصبی عمیق در چالش های عملی جامانده و یادگیری ماشین نظری را با یک بحران مواجه کرده است. بااین حال، شکاف بین نظریه و عمل به تدریج در حال از بین رفتن است. در این پژوهش سعی می شود تا چند مفهوم ریاضی قابل توجه و در حال رشد را که از تلاش برای درک مبانی یادگیری عمیق پدید آمده اند، جمع آوری کنیم. دو موضوع کلیدی در این زمینه درونیابی و همزاد آن بیش پارامتری خواهد بود. درونیابی با برازش دقیق داده ها، حتی داده های نوفه ای متناظر است. بیش پارامتری درونیابی را شدنی می کند و انعطاف پذیری را برای انتخاب یک مدل درونیابی مناسب فراهم می کند‎.‎ ‎ ‎‎‎همان طور که یک منشور فیزیکی واقعی رنگ های مخلوط شده در یک پرتو نور را جدا می کند، منشور تمثیلی درونیابی نیز به تفکیک ویژگی های تعمیم و بهینه سازی در تصویر پیچیدۀ یادگیری ماشین نوین کمک می کند. این پژوهش با این باور و امید انجام می شود که درک واضح تری از این مسائل ما را به سمت نظریۀ عمومی یادگیری عمیق و یادگیری ماشین نزدیک تر می کند.
پژوهشگران شاهرخ اسمعیلی (استاد راهنما)، اسرا شیرگیر (دانشجو)