مشخصات پژوهش

صفحه نخست /LINEAR MAPS ON BLOCK UPPER ...
عنوان LINEAR MAPS ON BLOCK UPPER TRIANGULAR MATRIX ALGEBRAS BEHAVING LIKE JORDAN DERIVATIONS THROUGH COMMUTATIVE ZERO PRODUCTS
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Derivation, Jordan derivation, block upper triangular matrix algebra.
چکیده Let T = T (n1,n2, · · · ,nk ) ⊆ Mn(C ) be a block upper triangular matrix algebra and let M be a 2-torsion free unital T -bimodule, where C is a commutative ring. Let Δ :T →M be a C -linear map. We show that if Δ(X)Y +XΔ(Y)+Δ(Y)X +YΔ(X)=0 whenever X,Y ∈ T are such that XY = YX = 0, then Δ(X) = D(X)+α(X)+XΔ(I), where D : T → M is a derivation, α : T →M is an antiderivation, I is the identity matrix and Δ(I)X = XΔ(I) for all X ∈ T . We also prove that under some sufficient conditions on T , we have α = 0. As a corollary, we show that under given sufficient conditions, each Jordan derivation Δ : T →M is a derivation and this is an answer to the question raised in [9]. Some previous results are also generalized by our conclusions.
پژوهشگران لیلا حیدری زاده (نفر سوم)، محمد نادر قصیری (نفر دوم)، هوگر قهرمانی (نفر اول)