عنوان
|
THE CLEANNESS OF (SYMBOLIC) POWERS OF STANLEY-REISNER IDEALS
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
clean; Cohen-Macaulay simplicial complex; complete intersection; matroid; symbolic power
|
چکیده
|
Let $\Delta$ be a pure simplicial complex and $I_\Delta$ its Stanley-Reisner ideal in a polynomial ring $S We show that $\Delta$ is a matroid (complete intersection) if and only if $S/I_\Delta^{(m)}$ ($S/I_\Delta^m$) is clean for all $m\in\mathbb{N}$. If $\dim(\Delta)=1$, we also prove that $S/I_\Delta^{(2)}$ ($S/I_\Delta^2$) is clean if and only if $S/I_\Delta^{(2)}$ ($S/I_\Delta^2$) is Cohen-Macaulay.
|
پژوهشگران
|
سمیه بندری (نفر اول)، علی سلیمان جهان (نفر دوم)
|