|
عنوان
|
Bounding the departure from normality of the iteration matrices for some special coefficient matrices of linear systems
|
|
نوع پژوهش
|
مقاله ارائه شده کنفرانسی
|
|
کلیدواژهها
|
Iterative linear system solvers-finite precision arithmetic- diagonally dominant matrix- irreducible matrix- symmetric positive definite- nonnormality
|
|
چکیده
|
Let $Ax=b$ for $A \in \mathbb{C}^{n \times n}$ and $b \in \mathbb{C}^n$ be a linear system and $x^{(0)},~x^{(k+1)}=Tx^{(k)}+d$ be one of Jacobi's or Gauss-Seidel's iteration formula for solving the linear system. In this work, we introduce some bounds on the departure from normality of the iteration matrices $T$ for some special coefficient matrices $A$.
|
|
پژوهشگران
|
مراد احمدنسب (نفر اول)، نبی مظفری (نفر دوم)
|