1403/09/01
هیمن شهابی

هیمن شهابی

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 23670602300
دانشکده: دانشکده منابع طبیعی
نشانی: دانشکده منابع طبیعی، دانشگاه کردستان
تلفن: 087-33664600-8 داخلی 4312

مشخصات پژوهش

عنوان
سنجش و پیش‌بینی تاب آوری جوامع در معرض آلودگی آرسنیک (مطالعه موردی: شهرستان بیجار)
نوع پژوهش
پایان نامه
کلیدواژه‌ها
آرسنیک، تاب آوری، الگوریتم های یادگیری ماشین، پیشبینی، بیجار.
سال 1402
پژوهشگران زلیخا قیصری(دانشجو)، داود جمینی(استاد راهنما)، عطااله شیرزادی(استاد راهنما)، هیمن شهابی(استاد مشاور)

چکیده

آرسنیک یکی از فلزات سنگین است که می تواند به شیوه های مختلفی از جمله آلودگی منابع آب و خاک، به صورت مستقیم و غیرمستقیم محیط زیست یک منطقه را با تهدیدهای جدی مواجه نماید. شهرستان بیجار از فضاهای جغرافیایی واقع در استان کردستان است که محیط آن به لحاظ آلودگی به آرسنیک، در وضعیت نامناسبی قرار دارد. با توجه به اهمیت مبحث تاب آوری در مقابله با انواع مخاطرات، سنجش وضعیت تاب آوری ساکنان در معرض آلودگی و پیشبینی عوامل موثر بر ارتقای تاب آوری می تواند نقش مهمی را در کاهش مخاطرات ناشی از آرسنیک ایفا نماید. از این رو هدف اصلی پژوهش حاضر سنجش و پیش‌بینی تاب آوری جوامع در معرض آلودگی آرسنیک در شهرستان بیجار است. جامعه آماری پژوهش را ساکنان شش روستای شهرستان (روستاهای نجف آباد، باشوکی، ابراهیم آباد، بابانظر، گوندک، علی آباد) تشکیل می دهد که نسبت به دیگر روستاها در معرض آلودگی آرسنیک بیشتری قرار گرفته اند و در میان آن ها 150 نفر به عنوان نمونه آماری در نظر گرفته شده اند. ابزار اصلی پژوهش جهت جمع آوری داده ها، پرسشنامه محقق ساخته است که روایی و پایایی آن با رعایت اصول پژوهش های میدانی تأیید شده است. جهت تجزیه و تحلیل داده‌ها، از نرم افزار SPSS و الگوریتم های یادگیری ماشین (NBTree، Bayesian network، Naïve Bayes و Random Forest) استفاده شده است. نتایج پژوهش نشان داد وضعیت تاب‌آوری در محدوده مطالعاتی اکثریت پاسخگویان (78 درصد) در سطوح زیاد و خیلی زیاد قرار گرفته است. نتایج بررسی اهمیت فاکتورهای مؤثر بر تاب‌آوری آرسنیک با روش IGR نشان داد مهم ترین فاکتورهای مؤثر بر تاب‌آوری به ترتیب اهمیت عبارت اند از: سن (0/343)، تحصیلات (0/271)، مخارج ماهیانه خانوار (0/232)، تعداد بیکاران (226/0)، آگاهی (0/181)، بعد خانوار (0/171)، مالکیت منابع سرمایه‌ای (0/17)، پیشامدهای اقتضایی (0/116) و شغل اصلی (0/108). نتایج مقایسه عملکرد الگوریتم های یادگیری ماشین برای پیش‌بینی تاب‌آوری در برابر آرسنیک نشان داد در میان الگوریتم های مورد بررسی، الگوریتم NBTree دارای بهترین عملکرد در پیش‌بینی تاب‌آوری در برابر آرسنیک بوده است.