نام و نام خانوادگی بیسواجیت پرادهان شغل پژوهشگر خارجی تحصیلات دکترای تخصصی / GIS modelling وبسایت پست الکترونیک — مقاله چاپشده در مجلات علمی مقاله ارائه شده کنفرانسی سخنرانی تدریس در کارگاه کتاب نوآوری جذب گرنت پایان نامه کسب مقام در جشنواره طرح پژوهشی خاتمه یافته فروش محصولات دانش بنیان اثر بدیع و ارزنده هنری تدوین استاندارد عنوانمجله 1 Predicting sustainable arsenic mitigation using machine learning techniques ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2 Swarm intelligence optimization of the group method of data handling using the cuckoo search and whale optimization algorithms to model and predict landslides APPLIED SOFT COMPUTING 3 Hybridized neural fuzzy ensembles for dust source modeling and prediction ATMOSPHERIC ENVIRONMENT 4 SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors Geoscience Frontiers 5 A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping Water 6 A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran) SENSORS 7 Modeling flood susceptibility using data-driven approaches of naive Bayes tree, alternating decision tree, and random forest methods SCIENCE OF THE TOTAL ENVIRONMENT 8 Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model Remote Sensing 9 Novel Hybrid Integration Approach of Bagging-Based Fisher’s Linear Discriminant Function for Groundwater Potential Analysis Natural Resources Research 10 A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods JOURNAL OF HYDROLOGY 11 Shallow Landslide Prediction Using a Novel Hybrid Functional Machine Learning Algorithm Remote Sensing 12 Multi-Criteria Decision Making (MCDM) Model for Seismic Vulnerability Assessment (SVA) of Urban Residential Buildings ISPRS International Journal of Geo-Information 13 Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping SENSORS 14 Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches JOURNAL OF HYDROLOGY 15 Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms SENSORS 16 A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China) Environmental Earth Sciences 17 Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China SCIENCE OF THE TOTAL ENVIRONMENT