عنوان
|
The continuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
finite element - continuous Galerkin - linear viscoelasticity - fractional calculus - weakly singular kernel - stability - a priori error estimate
|
چکیده
|
We consider a fractional order integro-differential equation with a weakly singular convolution kernel. The equation with homogeneous mixed Dirichlet and Neumann boundary conditions is reformulated as an abstract Cauchy problem, and well-posedness is verified in the context of linear semigroup theory. Then we formulate a continuous Galerkin method for the problem, and we prove stability estimates. These are then used to prove a priori error estimates. The theory is illustrated by a numerical example
|
پژوهشگران
|
فردین ساعد پناه (نفر دوم)، استیگ لارسون (نفر اول)
|