مشخصات پژوهش

صفحه نخست /The continuous Galerkin ...
عنوان The continuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها finite element - continuous Galerkin - linear viscoelasticity - fractional calculus - weakly singular kernel - stability - a priori error estimate
چکیده We consider a fractional order integro-differential equation with a weakly singular convolution kernel. The equation with homogeneous mixed Dirichlet and Neumann boundary conditions is reformulated as an abstract Cauchy problem, and well-posedness is verified in the context of linear semigroup theory. Then we formulate a continuous Galerkin method for the problem, and we prove stability estimates. These are then used to prove a priori error estimates. The theory is illustrated by a numerical example
پژوهشگران فردین ساعد پناه (نفر دوم)، استیگ لارسون (نفر اول)