عنوان
|
A Characterization of Sequentially Cohen–Macaulay Matroidal Ideals
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
sequentially Cohen–Macaulay, monomial ideals, matroidal ideals
|
چکیده
|
Let $R=K[x_1,...,x_n]$ be the polynomial ring in $n$ variables over a field $K$ and $I$ be a matroidal ideal of $R$. We show that $I$ is sequentially Cohen-Macaulay if and only if the Alexander dual $I^{\vee}$ has linear quotients. As consequence, $I$ is sequentially Cohen-Macaulay if and only if $I$ is shellable.
|
پژوهشگران
|
هیرو سارمی (نفر سوم)، امیر مافی (نفر دوم)، پیمان محمود همالی (نفر اول)
|