مشخصات پژوهش

صفحه نخست /On the dual of Burch's ...
عنوان On the dual of Burch's inequality and the width of certain graded Artinian modules
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Reduction of ideals, Artinian modules, Co-Cohen-Macaulay
چکیده Let $(A,\fm)$ be a commutative quasi-local ring with non-zero identity with infinite residue field and let $I$ be an ideal of $A$. Let $M$ be an Artinian $A$-module and $G(I,M)$ be a dual of associated graded module and we denote by $s(I,M)$ the analytic spread of $I$ with respect to $M$. The dual of Burch's inequality says that $s(I,M)+\inf\{\width(0:_MI^n): n\geq 1\}\leq\dim M$, and it is well known that equality holds if $G(I,M)$ is co-Cohen-Macaulay. Thus, in that case one can compute the width of dual of the associated graded module $I$ as $\width G(I,M)=s(I,M)+\inf\{\width(0:_MI^n): n\geq 1\}$. We study when such an equality is also valid when $G(I,M)$ is not necessarily co-Cohen-Macaulay.
پژوهشگران محمد توحیدی (نفر سوم)، دلیر نادری (نفر دوم)، امیر مافی (نفر اول)