مشخصات پژوهش

صفحه نخست /Linear resolutions and ...
عنوان Linear resolutions and polymatroidal ideals
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Polymatroidal ideal; monomial ideal; linear resolution
چکیده ‎Let $R=K[x_1,...,x_n]$ be the polynomial ring in $n$ variables over a field $K$ and $I$ be a monomial ideal generated in degree $d$‎. ‎Bandari and Herzog conjectured that a monomial ideal $I$ is polymatroidal if and only if all its monomial localizations have a linear resolution‎. ‎In this paper we give an affirmative answer to the conjecture in the following cases‎: ‎$(i)$ $\height(I)=n-1$; $(ii)$ $I$ contains at least $n-3$ pure powers of the variables $x_1^d,...,x_{n-3}^d$; $(iii)$ $I$ is a monomial ideal in at most four variables‎.
پژوهشگران امیر مافی (نفر اول)، دلیر نادری (نفر دوم)