عنوان
|
Estimation of Isentropic Compressibility of Biodiesel Using ELM Strategy: Application in Biofuel Production Processes
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
Extreme learning machine, Isentropic compressibility, Machine learning, Biodiesel, Sensitivity analysis
|
چکیده
|
Isentropic compressibility is one of the significant properties of biofuel. On the other hand, the complexity related to theexperimental procedure makes the detection process of this parameter time-consuming and hard. Thus, we propose a newMachine Learning (ML) method based on Extreme Learning Machine (ELM) to model this important value. A real databasecontaining 483 actual datasets is compared with the outputs predicted by the ELM model. The results of this comparison showthat this ML method, with a mean relative error of 0.19 andR2values of 1, has a great performance in calculations related to thebiodieselfield. In addition, sensitivity analysis exhibits that the most efficient parameter of input variables is the normal meltingpoint to determine isentropic compressibility.
|
پژوهشگران
|
سید مهدی علیزاده (نفر پنجم)، اددوین ایسولا لاوال (نفر چهارم)، تزو چیا چن (نفر سوم)، میثم حسینی (نفر دوم)، ماریسچا الونی (نفر اول)
|