مشخصات پژوهش

صفحه نخست /On the Hilbert coefficients, ...
عنوان On the Hilbert coefficients, depth of associated graded rings and reduction numbers
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Hilbert coefficient, minimal reduction, associated graded ring
چکیده Let $(R,\fm)$ be a $d$-dimensional Cohen-Macaulay local ring, $I$ an $\fm$-primary ideal of $R$ and $J=(x_1,...,x_d)$ a minimal reduction of $I$. We show that if $J_{d-1}=(x_1,...,x_{d-1})$ and $\sum\limits_{n=1}^\infty\lambda{({{I^{n+1}}\cap J_{d-1}})/({J{I^n} \cap J_{d-1}})=i}$ where i=0,1, then $\depth G(I)\geq{d-i-1}$. Moreover, we prove that if ${e_2}(I)=\sum\limits_{n = 2}^\infty{(n-1)\lambda({{I^{n }}}/{J{I^{n-1}}})}-2;$ or if $I$ is integrally closed and\\ ${e_2}(I)=\sum\limits_{n=2}^\infty{(n-1)\lambda({{I^{n}}}/{J{I^{n-1}}})}-3$, then ${e_1}(I)=\sum\limits_{n=1}^\infty{\lambda({{I^{n }}}/{J{I^{n-1}}})}-1,$ where the integers $e_i$ are the Hilbert coefficients of $I$. In addition, if $J$ is a minimal reduction of $I$ then we prove that the reduction number $r_J(I)$ is independent of $J$.
پژوهشگران دلیر نادری (نفر دوم)، امیر مافی (نفر اول)