چکیده
|
We address the growing controversy about the tectonic setting in which Jurassic magmatism of Iran occurred: arc or continental rift. In the Ghorveh area of the northern Sanandaj Sirjan zone (SaSZ), the Ghalayanmetabasites are interlayered with marble and schist and locally cut by acidic dikes. Zircon U-Pb dating of the metabasitic rocks shows that these crystallized at ca. 145–144 Ma ago in the Late Jurassic (Tithonian). This complexwasmetamorphosed in the lower greenschist facies, however, some protolithic structures such as pillow lava and primaryminerals are preserved. Themetabasites are tholeiites with low SiO2 (45.6–50.5 wt.%), moderate Al2O3 (11.3–17.0 wt.%), and high TiO2 (0.7–2.9 wt.%) and Fe2O3 (9.4– 14.1 wt.%). The Ghalayan metabasites are enriched in Light rare earth elements (LREEs) without significant Nb, Ta, Pb, Sr and Ba anomalies, similar to modern continental intra-plate tholeiitic basalts such as Afar and East African rifts. The Ghalaylan metabasites show wide ranges for 87Sr/86Sr(i) (0.7039– 0.7077) and positive εNd(t) values (+0.1 to +4.6). These isotopic compositions are similar to those expected for slightly depleted subcontinental lithospheric mantle sources. Independently built discrimination diagrams indicate an intra-continental rifting regime for the source of Jurassicmetabasites in the northern SaSZ. Geochemical and tectonic evidence suggests that rifting or a mantle plume was responsible for volcanic activity in the Upper Jurassic SaSZ. Considering the variation of ages of basaltic volcanismalong the SaSZ, we suggest that Ghalayan basalticmagmatism reflected a submarine volcano that formed as part of the late stage continental rift, similar to Afar in the East African Rift system. Our results indicate that an extensional tectonic regime dominated SaSZ tectonics in the Middle to Late Jurassic.
|