مشخصات پژوهش

صفحه نخست /On the first generalized ...
عنوان On the first generalized Hilbert coefficient and depth of associated graded rings
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Generalized Hilbert coefficient, minimal reduction, associated graded ring
چکیده ‎Let $(R,\frak{m})$ be a $d$-dimensional Cohen-Macaulay local ring with infinite residue field‎. ‎Let $I$ be an ideal of $R$ that has analytic spread $\ell(I)=d$‎, ‎satisfies the $G_d$ condition‎, ‎the weak Artin-Nagata property $AN_{d-2}^-$ and $\frak{m}$ is not an associated prime of $R/I$‎. ‎In this paper‎, ‎we show that if $j_1(I) = \lambda (I/J)‎ +‎\lambda [R/(J_{d-1}‎ :‎_{R} I+(J_{d-2}‎ :‎_{R}I+I)‎ ‎:_{R}{\frak{m}}^{\infty})]+1$,‎ ‎then $I$ has almost minimal $j$-multiplicity‎, ‎$G(I)$ is Cohen-Macaulay and $r_J(I)$ is at most 2‎, ‎where $J=(x_1‎, . . . ,‎x_d)$ is a general minimal reduction of $I$ and $J_i=(x_1‎, . . . ‎,x_i)$.‎ ‎In addition‎, ‎the last theorem is in the spirit of a result of Sally who has studied the depth of associated graded rings and minimal reductions for an $\frak{m}$-primary ideals‎.
پژوهشگران دلیر نادری (نفر دوم)، امیر مافی (نفر اول)