عنوان
|
Unmixedness and arithmetic properties of matroidal ideals
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
Arithmetical rank, Unmixed ideals, Matroidal ideals
|
چکیده
|
Let $R=k[x_1,...,x_n]$ be the polynomial ring in $n$ variables over a field $k$ and $I$ be a matroidal ideal of degree $d$. In this paper, we study the unmixedness properties and the arithmetical rank of $I$. Moreover, we show that $ara(I)=n-d+1$. This answers the conjecture made by H. J. Chiang-Hsieh \cite[Conjecture]{C}.
|
پژوهشگران
|
هیرو صارمی (نفر اول)، امیر مافی (نفر دوم)
|