مشخصات پژوهش

صفحه نخست /Reduction of Ideals Relative ...
عنوان Reduction of Ideals Relative to an Artinian Module and the Dual of Burch’s Inequality
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Reduction of ideals, Artinian modules, co-Cohen-Macaulay
چکیده Let $(A,\fm)$ be a commutative quasi-local ring with non-zero identity and $M$ be an Artinian $A$-module with $\dim M=d$. If $I$ is an ideal of $A$ with $\ell(0:_MI)<\infty$, then we show that for a minimal reduction $J$ of $I$, $(0:_{M}{J}I)=(0:_{M}I^2)$ if and only if $\ell(0:_{M}I^{n+1})=\ell(0:_{M}{J})\binom{n+d}{d}-\ell(\frac{0:_{M}{J}}{0:_{M}I})\binom{n+d-1}{d-1},$ for all $n\geq 0$. Also we study the dual of Burch's inequality. In particular, the Burch's inequality is equality if $G(I,M)$ is co-Cohen-Macaulay.
پژوهشگران فاطمه چراغی (نفر اول)، امیر مافی (نفر دوم)