عنوان
|
نتایجی از تعمیم نامساوی بورخ و عمق جبر ریس و حلقه مدرج وابسته یک ایدآل نسبت به یک مدول کوهن - مکالی
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
مدول مدرج وابسته، عدد بورخ، همبرش کامل، انحراف تحلیلی، بسط تحلیلی، عدد تقلیل
|
چکیده
|
فرض کنید یک حلقه موضعی کوهن - مکالی با هیأت مانده ای نامتناهی ، یک - مدول کوهن - مکالیو ایدآلی از باشد. فرض کنید و ، به ترتیب جبر ریس و حلقه مدرج وابسته و نشان دهنده ی بسط تحلیلی باشد. نامساوی بورخ بیان می کند که و تساوی زمانی برقرار است که کوهن - مکالی باشد. بنابراین در این حالت می توان با محاسبه عمق حلقه مدرج وابسته ، بیان کرد . ما در این مقاله نتایج را به حالت مدولی تعمیم می دهیم و نشان خواهیم داد برای عمق مدول مدرج وابسته نسبت به ؛ یعنی ، این تساوی در حالت مدولی حتی اگر لزوماً کوهن - مکالی نباشد نیز برقرار است و تعمیم نامساوی بورخ را ثابت خواهیم کرد. همچنین به محاسبه عمق جبر ریس و حلقه مدرج وابسته به یک ایدآل نوعاً همبرش کامل نسبت به مدول در یک حلقه موضعی کوهن - مکالی خواهیم پرداخت و نتایجی را درباره ی ایدآل های با انحراف تحلیلی کوچکتر یا مساوی یک با عدد تقلیل حداکثر دو نسبت به مدول به دست می آوریم.
|
پژوهشگران
|
خدیجه احمدی آملی (نفر سوم)، محمد توحیدی (نفر اول)، امیر مافی (نفر دوم)
|