مشخصات پژوهش

صفحه نخست /Stability properties of ...
عنوان Stability properties of powers of ideals in regular local rings of small dimension
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Associated primes, depth stability number
چکیده Let $(R,\mm)$ be a regular local ring or a polynomial ring over a field, and let $I$ be an ideal of $R$ which we assume to be graded if $R$ is a polynomial ring. Let $\astab(I)$, $\overline{\astab}(I)$ and $\dstab(I)$, respectively, be the smallest integer $n$ for which $\Ass(I^n)$, $\Ass(\overline{I^n})$ and $\depth(I^n)$ stabilize. Here $\overline{I^n}$ denotes the integral closure of $I^n$. We show that $\astab(I)=\overline{\astab}(I)=\dstab(I)$ if $\dim R\leq 2$, while already in dimension $3$, $\astab(I)$ and $\overline{\astab}(I)$ may differ by any amount. Moreover, we show that if $\dim R=4$, then there exist ideals $I$ and $J$ such that for any positive integer $c$ one has $\astab(I)-\dstab(I)\geq c$ and $\dstab(J)-\astab(J)\geq c$.
پژوهشگران یورگن هرزوگ (نفر اول)، امیر مافی (نفر دوم)