عنوان
|
On Ideals and Radicals of Upper Triangular Matrix Rings
|
نوع پژوهش
|
مقاله ارائه شده کنفرانسی
|
کلیدواژهها
|
Triangular matrix ring, ideal, Brown-McCoy radical, lower nilradical, upper nilradical, Jacobson radical, Catalan number
|
چکیده
|
Let R be a ring with identity, n\geq 1, and T_n(R) be the ring of all n\times n upper Triangular matrices over R. In this paper we determine the structure of ideals, lower nilradical, upper nilradical, Jacobson radical, and Brown McCoy radical of certain subrings of T_n(R). The number of ideals of T_n(Z_m), for the case when m is a product of distinct primes is also obtained. The later is an extension of a reals of Shapiro.
|
پژوهشگران
|
محمد نادر قصیری (نفر اول)
|