عنوان
|
Results on almost Cohen-Macaulay modules
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
Almost Cohen-Macaulay module, Perfect module, Ext functor
|
چکیده
|
Let $(R,\fm)$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient conditions of $M$ to be an almost Cohen-Macaulay module by using $\Ext$ functors.
|
پژوهشگران
|
سمانه تابع جماعت (نفر دوم)، امیر مافی (نفر اول)
|