مشخصات پژوهش

صفحه نخست /On convergence of the finite ...
عنوان On convergence of the finite element method for dynamic fractional order viscoelasticity
نوع پژوهش مقاله ارائه شده کنفرانسی
کلیدواژه‌ها finite element method _ positive type kernel _ integro-differential equation _ a priori error estimate
چکیده The standard Galerkin finit element method for spatial discretization of an integro-differential equation is studied. The model problem arises in the theory of fractional order viscoelasticity, which has a memory term with a kernel of positive type. Optimal order $L^\infty(L^2)$ and $L^\infty(H^1)$ a priori error estimates for the finite element approximation of the solution are obtained.
پژوهشگران فردین ساعد پناه (نفر دوم)، زینب فرزانه (نفر اول)