عنوان
|
On convergence of the finite element method for dynamic fractional order viscoelasticity
|
نوع پژوهش
|
مقاله ارائه شده کنفرانسی
|
کلیدواژهها
|
finite element method _ positive type kernel _ integro-differential equation _ a priori error estimate
|
چکیده
|
The standard Galerkin finit element method for spatial discretization of an integro-differential equation is studied. The model problem arises in the theory of fractional order viscoelasticity, which has a memory term with a kernel of positive type. Optimal order $L^\infty(L^2)$ and $L^\infty(H^1)$ a priori error estimates for the finite element approximation of the solution are obtained.
|
پژوهشگران
|
فردین ساعد پناه (نفر دوم)، زینب فرزانه (نفر اول)
|