The continuous-time quantum walk on the underlying graphs of association schemes has been studied, via the algebraic combinatorics structures of association schemes, namely semi-simple modules of their Bose–Mesner and Terwilliger algebras. It is shown that the Terwilliger algebra stratifies the graph into a (d + 1) disjoint union of strata which is different from the stratification based on distance, except for distance regular graphs. In underlying graphs of association schemes, the probability amplitudes and average probabilities are given in terms of dual eigenvalues of association schemes, such that the amplitudes of observing the continuous-time quantum walk on all sites belonging to a given stratum are the same, therefore there are at most (d + 1) different observing probabilities. The importance of association scheme in continuous-time quantum walk is shown by some worked out examples such as arbitrary finite group association schemes followed by symmetric S_n, Dihedral D2m and cyclic groups. At the end it is shown that the highest irreducible representations of Terwilliger algebras pave the way to use the spectral distributions method of Jafarizadeh and Salimi (2005 Preprint quantph/0510174) in studying quantum walk on some rather important graphs called distance regular graphs.