در سالهای اخیر توجه زیادی به سمت کشف خوشه ها در خصوصیات شبکه های مختلف معطوف شده است. شبکه هایی نظیر اینترنت، وب گسترده جهانی، شبکه حمل و نقل، شبکه های ایمیل، شبکه-های اجتماعی و زیستی و... مثال هایی از این نوع شبکه ها هستند. به فرآیند گروه بندی کردن راس های گراف به داخل خوشه ها بطوری که در داخل هر خوشه تراکم یال ها زیاد و بین خوشه ها تراکم نسبتا کم باشد خوشه بندی کردن گراف گفته می شود. در سال های اخیر الگوریتم های زیادی برای شناسایی این ساختارها توسعه داده شده اند. از آنجایی که در کاربردهای واقعی اندازه داده ها با سرعت زیادی افزایش می یابد، کارایی الگـوریتم های کلاسیک برای گراف های بزرگ کاهش پیدا می کند. درچنین وضعیتی الگوریتم های خوشه بندی مبتنی بر مدل، یک جایگزین مناسب برای نوع های کلاسیک هستند. کارایی الگوریتم های خوشه بندی گراف مبتنی بر مدل به مقداردهی اولیه صحیح پارامترهای آن وابسته است. به همین منظور، در این پایان نامه یک الگوریتم تکاملی به منظور پیدا کردن مقادیر مناسب برای الگوریتم های خوشه بندی گراف مبتنی بر مدل ارائه شده است. روش ارائه شده هم بر روی داده های شبیه سازی شده و هم بر روی داده های واقعی مورد آزمایش قرار گرفته است و نتایج بدست آمده نشان دهنده افزایش کارایی روش پیشنهادی در مقایسه با مقداردهی تصادفی پارامترها است.