آراگون و جفری در 15 ویژگی های گوناگون منظمی متری زیر دیفرانسیل یک تابع محدب شبه پیوسته پایین عمل کننده بر روی یک فضای هیلبرت، بر حسب جملاتی از شرط رشد مجذوری را مشخصه سازی کرده اند. همچنین موردوخویچ و نیها در 4 مشخصه سازی منظمی قوی را به فضاهای باناخ توسیع داده اند. در این پایان نامه، توسیع مشخصه سازی های زیر منظمی متری و قوی انجام شده در 16 را به فضاهای باناخ مطالعه می کنیم. به علاوه، برخی استلزام های مستقیم مشخصه سازی های همگرایی الگوریتم نقطه پراکسیمال را نشان می دهیم و مشخصه سازی های زیر منظمی متری و ویژگی های سکون نگاشت های جواب معادلات تعمیم یافته پارامتری را ارایه می کنیم.