2024 : 11 : 21
Himan Shahabi

Himan Shahabi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 23670602300
HIndex: 0/00
Faculty: Faculty of Natural Resources
Address: Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
Phone: 087-33664600-8 داخلی 4312

Research

Title
Multi-Criteria Decision Making (MCDM) Model for Seismic Vulnerability Assessment (SVA) of Urban Residential Buildings
Type
JournalPaper
Keywords
analytic hierarchy process AHP; GIS; seismic vulnerability assessment (SVA); residential buildings; geotechnical vulnerability; structural vulnerability
Year
2018
Journal ISPRS International Journal of Geo-Information
DOI
Researchers Mohsen Ali Zadeh ، Mazlan Hashima ، Esmaeil Ali Zadeh ، Himan Shahabi ، Mohammadreza Karami ، Amin Beiranvand Pour ، Biswajeet Pradhan ، Hasan Zabihi

Abstract

Earthquakes are among the most catastrophic natural geo-hazards worldwide and endanger numerous lives annually. Therefore, it is vital to evaluate seismic vulnerability beforehand to decrease future fatalities. The aim of this research is to assess the seismic vulnerability of residential houses in an urban region on the basis of the Multi-Criteria Decision Making (MCDM) model, including the analytic hierarchy process (AHP) and geographical information system (GIS). Tabriz city located adjacent to the North Tabriz Fault (NTF) in North-West Iran was selected as a case study. The NTF is one of the major seismogenic faults in the north-western part of Iran. First, several parameters such as distance to fault, percent of slope, and geology layers were used to develop a geotechnical map. In addition, the structural construction materials, building materials, size of building blocks, quality of buildings and buildings-floors were used as key factors impacting on the building’s structural vulnerability in residential areas. Subsequently, the AHP technique was adopted to measure the priority ranking, criteria weight (layers), and alternatives (classes) of every criterion through pair-wise comparison at all levels. Lastly, the layers of geotechnical and spatial structures were superimposed to design the seismic vulnerability map of buildings in the residential area of Tabriz city. The results showed that South and Southeast areas of Tabriz city exhibit low to moderate vulnerability, while some regions of the north-eastern area are under severe vulnerability conditions. In conclusion, the suggested approach offers a practical and effective evaluation of Seismic Vulnerability Assessment (SVA) and provides valuable information that could assist urban planners during mitigation and preparatory phases of less examined areas in many other regions around the world.