2024 : 4 : 28
Himan Shahabi

Himan Shahabi

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 23670602300
Faculty: Faculty of Natural Resources
Address: Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran ORCID ID: orcid.org/0000-0001-5091-6947
Phone: 087-33664600-8 داخلی 4312

Research

Title
Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China
Type
JournalPaper
Keywords
Landslide susceptibility, Bayes' net, Radical basis function classifier, Logistic model tree, Random forest, China
Year
2018
Journal SCIENCE OF THE TOTAL ENVIRONMENT
DOI
Researchers Wei Chen ، Jianbing Peng ، Haoyuan Hong ، Himan Shahabi ، Biswajeet Pradhan ، Junzhi Liu ، A-xing Zhu ، xiangjun pei ، Zhao Duan

Abstract

The preparation of a landslide susceptibility map is considered to be the first step for landslide hazard mitigation and risk assessment. However, these maps are accepted as end products that can be used for land use planning. The main goal of this study is to assess and compare four advanced machine learning techniques, namely the Bayes' net (BN), radical basis function (RBF) classifier, logistic model tree (LMT), and random forest (RF) models, for landslide susceptibility modelling in Chongren County, China. A total of 222 landslide locations were identified in the study area using historical reports, interpretation of aerial photographs, and extensive field surveys. The landslide inventory data was randomly split into two groups with a ratio of 70/30 for training and validation purposes. Fifteen landslide conditioning factors were prepared for landslide susceptibility modelling. The spatial correlation between landslides and conditioning factors was analyzed using the information gain (IG) method. The BN, RBF classifier, LMT, and RF models were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) and statistical measures, including sensitivity, specificity, and accuracy, were employed to validate and compare the predictive capabilities of the models. Out of the tested models, the RF model had the highest sensitivity, specificity, and accuracy values of 0.787, 0.716, and 0.752, respectively, for the training dataset. Overall, the RF model produced an optimized balance for the training and validation datasets in terms of AUC values and statistical measures. The results of this study also demonstrate the benefit of selecting optimal machine learning techniques with proper conditioning selection methods for landslide susceptibility modelling.