2024 : 4 : 27
Himan Shahabi

Himan Shahabi

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 23670602300
Faculty: Faculty of Natural Resources
Address: Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran ORCID ID: orcid.org/0000-0001-5091-6947
Phone: 087-33664600-8 داخلی 4312

Research

Title
Improving the performance of artificial intelligence models using the rotation forest technique for landslide susceptibility mapping
Type
JournalPaper
Keywords
Alternating decision tree · Ensemble models · J48 decision tree · Landslide spatial prediction · Random forest
Year
2023
Journal International Journal of Environmental Science and Technology
DOI
Researchers Hen Shen ، Faming Huang ، Xian Fan ، Himan Shahabi ، Ataollah Shirzadi ، Diue Wang ، Cui Peng ، Xui Zhao ، Wei Chen

Abstract

Landslide susceptibility assessment has always been the focus of landslide spatial prediction research. In the present study, Muchuan County was selected as the study area, and four well-known machine learning models were adopted, namely, rotation forest (RF), J48 decision tree (J48), alternating decision tree (ADTree) and random forest (RaF). They and their ensembles (RF-J48, RF-ADTree and RF-RaF) were applied to landslide spatial prediction in Muchuan County. Eleven landslide conditioning factors, including plan curvature, profile curvature, slope angle, elevation, topographic wetness index, land use, normalized difference vegetation index, soil, lithology, distance to roads and distance to rivers, were established. In addition, 279 landslide datasets were compiled and randomly divided into 195 landslide training datasets and 84 landslide verification datasets. The contributions of the eleven conditioning factors were analyzed by J48, ADTree, and RaF models, respectively. The results show that lithology, slope angle, elevation, land use, soil, and distance to roads were the six principal landslide conditioning factors. Then, the Jenks natural break method was used to divide the landslide susceptibility maps into five grades. In addition, the accuracy of the above six models was verified by implementing the receiver operating characteristic curve and area under the receiver operating characteristic curve. The RF-RaF model achieved the best performance, and the rest were ranked as follows: RF-ADTree model, RaF model, RF-J48 model, ADTree model and J48 model. The results could provide scientific references for local natural resource departments.