انتگرال توابع با نوسان زیاد دارای کاربردهای زیادی در حل معادلات دیفرانسیل نوسانی، معادلات انتگرال صوتی و غیره می باشند اما محاسبه این انتگرال ها مشکل است. در این پایان نامه به ارائه انواع روش های عددی برای تقریب انتگرال توابع با نوسان زیاد می پردازیم، که دقت این روش ها با افزایش نوسان، افزایش می یابد. در ابتدا روش بسط مجانبی را که نقطه عطفی برای معرفی سایر روش ها است معرفی می کنیم. از جمله روش های دیگر، روش فیلون است که به محاسبه گشتاورها نیاز دارد. روش لِوین، که بر خلاف روش فیلون به محاسبه گشتاورها احتیاج ندارد ولی دقت آن از روش فیلون کم تر است. در ادامه روش گام کاهشی را معرفی می کنیم که بر پایه قاعده انتگرال گیری گاوس- لاگر است و به انتگرال توابع نوسانی روی بازه نیمه متناهی گسترش داده می شود.