Research Info

Home /A Chelation‑enhanced ...
Title A Chelation‑enhanced Fluorescence Assay using Thiourea Capped Carbonaceous Fluorescent Nanoparticles for As (III) Detection in Water Samples
Type JournalPaper
Keywords Arsenic (III), · Sensor ,· Carbonaceous fluorescent nanomaterials, · Turn on fluorescence signal
Abstract Herein, we designed a sensitive and selective “Turn-On” fluorescence nanosensor using water-soluble carbonaceous fluorescent nanomaterials (CFNs) functionalized with thiourea (CFNs-Thiourea) for efficient detection of trace concentrations of arsenic (III) in aqueous samples. The CFNs and CFNs-Thiourea were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV-vis) and fourier transformed infrared spectroscopy (FTIR). The emission peak intensity of proposed nanosensor at 425 nm was gradually enhanced on arsenite addition in a wide detection range (3.3–828.5 μg L−1) attributed to the binding of arsenite species with sulfur groups of CFNs-Thiourea. The limit of detection (LOD) was 0.48 μg L−1 being much lower than the World Health Organization (WHO) recommended threshold value of 10 μg L−1. Furthermore, the as-prepared CFNs-Thiourea exhibited a superb selectivity for As (III) compared to various cations and anions, such as; NO3−, NO2−, F−, Ni2+, Fe3+, Cu2+, Ca2+, Mg2+, Zn2+, Fe2+, Hg2+, Pb2+, F−, Cl−, Mn2+, Cr3+, Co2+, Cd2+, Bi3+, Al3+ and As (V) at 100 folds concentration of As (III). The turn on fluorescence nanosensor was successfully exploited for quantification of arsenic in spiked water samples with acceptable efficiencies.
Researchers Rezgar Ahmadi (Fourth Researcher), Abdollah Salimi (Third Researcher), Somayeh Mohammadi (Second Researcher), susan mohammadi (First Researcher)