Research Info

Home /A Novel Hybrid Artificial ...
Title A Novel Hybrid Artificial Intelligence Approach for Flood Susceptibility Assessment
Type JournalPaper
Keywords Flood Susceptibility; Bagging-LMT; Bayesian Logistic Regression; Logistic Model Tree; Iran
Abstract A new artificial intelligence (AI) model, called Bagging-LMT - a combination of bagging ensemble and Logistic Model Tree (LMT) - is introduced for mapping flood susceptibility. A spatial database was generated for the Haraz watershed, northern Iran, that included a flood inventory map and eleven flood conditioning factors based on the Information Gain Ratio (IGR). The model was evaluated using precision, sensitivity, specificity, accuracy, Root Mean Square Error, Mean Absolute Error, Kappa and area under the receiver operating characteristic curve criteria. The model was also compared with four state-of-the-art benchmark soft computing models, including LMT, logistic regression, Bayesian logistic regression, and random forest. Results revealed that the proposed model outperformed all these models and indicate that the proposed model can be used for sustainable management of flood-prone areas.
Researchers Khabat Khosravi (Not In First Six Researchers), Binh Thai Pham (Not In First Six Researchers), DieuTien Bui (Fifth Researcher), Himan Shahabi (Fourth Researcher), Ataollah Shirzadi (Third Researcher), Vijay P. Singh (Second Researcher), Kamran Chapi (First Researcher)