Research Info

Home /Comparing data mining ...
Title Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran
Type JournalPaper
Keywords Digital soil mapping,Taxonomic distance,Auxiliary data,Iran
Abstract Digital soil mapping involves the use of auxiliary data to assist in the mapping of soil classes. In this research, we investigate the predictive power of 6 data mining classifiers, namely Logistic regression (LR), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbour (KNN), random forest (RF), and decision tree model (DTM) to create a DSM across an area covering of 3000 ha in Kurdistan Province, north-west Iran. In this area, using the conditioned Latin hypercube sampling method, 217 soil profiles were selected, sampled, analysed and allocated to taxonomic classes according to Soil Taxonomy up to family level. To test the user accuracy (UA) we established a calibration and validation set (70:30%). Of the 5 soil family classes we map, the highest overall accuracy (0.71) and kappa index (0.69) are achieved using the DTA and ANN method.More specifically, the UA of prediction was up to 18.33% better in comparison to LR.Moreover, our results showed that no improvementwas obtained in prediction accuracy of DTA algorithm with minimizing taxonomic distance compared to minimizing misclassification error (0.71). Overall, our results suggest that the developed methodology could be used to predict soil classes in the other regions of Iran.
Researchers John Triantafilis (Fourth Researcher), Budiman Minasny (Third Researcher), Roholah taghizade (First Researcher), Kamal Nabiollahi (Second Researcher)