The effect of five drying methods including shade drying (SHD), solar drying (SOD), and oven drying at 30 (OD30), 40 (OD40) and 50 C (OD50) on the phytochemical composition and antioxidant potential of C. dactylon leaf and rhizome was assessed. Among drying methods, OD50 resulted in the shortest drying time (18.3 and 12 h for rhizome and leaf, respectively), when compared with SHD and SOD. Based on GC–MS analyses, 15 and 17 constituents were identified in leaf and rhizome extracts, respectively, accounting for * 99% of all components. Fatty acids (palmitic acid and linoleic acid) along with their methyl esters (ethyl palmitate, ethyl linoleate and ethyl oleate) and other derivatives (dihomo-c-linoleic acid) were the main identified constituents shortly after drying procedures; however, other components such as 5-hydroxymethylfurfural, maltol, retinol and phytol were also traced. Some of C. dactylon phytochemicals including 5-hydroxymethylfurfural and ethyl linoleate were sensitive to high drying temperatures. Besides, higher drying temperatures lead to the production or increasing the level of substances such as 2,3-dihydrobenzofuran, tricyclopentadeca-3,7-dien and 2,3-dihydro-3,5-dihydroxy-6-methyl- 4H-pyran-4-one and diacetin. Based on the 2,2-diphenyl-1- picrylhydrazyl (DPPH) free radical scavenging assay, the IC50 values were generally higher (significance level of 0.05) for oven-dried rhizome compared with shade-dried leaves and rhizomes that quenched more than 84% of the DPPH at the concentration of 400 mg/ml (IC50 59.12). Our findings suggest that OD30 is a versatile drying method not only to reduce drying time but also to preserve the main phytochemicals and antioxidant activity of C. dactylon during dehydration.