وقتی هدف تفکیک و تخصیص داده های ناهمگن، به گروه هایی همگن باتوجه به یک معیار شباهت باشد، خوشه بندی یک ابزار آماری بسیار مفید است. در اغلب کاربردها به علت پیچیدگی های محاسباتی، از خطای اندازه گیری صرف نظر می شود، که ممکن است منجر به نتایج خوشه بندی نادرست شود. بنابراین ما در این پایان نامه، به خوشه بندی داده ها با روش های مختلف در حضور خطای اندازه گیری و تأثیر این خطا بر خوشه بندی می پردازیم. به طور خاص، مدل آمیخته ی چندمتغیره گاوسی را مورد مطالعه قرار داده و فن MCLUST را به حالت داده های همراه با خطای اندازه گیری تعمیم می دهیم. برای رسیدن به این اهداف در فصل اول مقدمات خوشه بندی، ارزیابی نتایج و انواع روش های خوشه بندی را بیان می کنیم. فصل دوم خوشه بندی مبتنی بر مدل و مفهوم خطای اندازه گیری و تأثیر آن بر خوشه بندی را شامل خواهد شد. در فصل سوم خوشه بندی مبتنی بر مدل در حضور خطای اندازه گیری مورد بحث دقیق قرار گرفته و فن جدیدی با نام MCLUST-ME به همراه روش برآورد پارامترها با الگوریتم EMرا معرفی می کنیم. هم چنین در این فصل الگوریتم K-means را به حالت داده های با خطای اندازه گیری گسترش می دهیم. در فصل چهارم با استفاده از چندین شبیه سازی و تحلیل داده های مسکن شهر بوستون، روش ها و الگوریتم های بیان شده را مورد استفاده عملی و ارزیابی قرار می دهیم. سرانجام در فصل پنجم نتیجه گیری و پیشنهادات بیان می شود.