In the present paper, we study the continuous-time quantum walk on quotient graphs. On such graphs, there is a straightforward reduction of the problem to a subspace that can be considerably smaller than the original one. Along the lines of reductions, by using the idea of calculation of the probability amplitudes for continuous-time quantum walk in terms of the spectral distribution associated with the adjacency matrix of graphs [Jafarizadeh and Salimi (Ann. Phys. 322 (2007))], we show that the continuous-time quantum walk on original graph Γ induces a continuous-time quantum walk on quotient graph ΓH. Finally, for example, we investigate the continuous-time quantum walk on some quotient Cayley graphs.