2024 : 11 : 21
Shahrokh Esmaeili

Shahrokh Esmaeili

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 15834719000
HIndex:
Faculty: Faculty of Science
Address: Department of Mathematics University of Kurdistan
Phone: 08733624133

Research

Title
A scalable and robust trust-based nonnegative matrix factorization recommender using the alternating direction method
Type
JournalPaper
Keywords
Recommender systems, Social trust, Matrix factorization Alternating direction method, Collaborative filtering
Year
2019
Journal KNOWLEDGE-BASED SYSTEMS
DOI
Researchers Hashem Parvin ، Parham Moradi ، Shahrokh Esmaeili ، Nooruldeen Nasih Qader

Abstract

Matrix Factorization (MF) has been proven to be an effective approach for the generation of a successful recommender system. However, most current MF-based recommenders cannot obtain high prediction accuracy due to the sparseness of the user–item matrix in collaborative filtering models. Moreover, they suffer from scalability issues when applied to large-scale real-world tasks. To tackle these issues, a social regularization method, called TrustANLF, is proposed, which incorporates users’ social trust information in a nonnegative matrix factorization framework. The proposed method integrates trust statements as an additional information source along with rating values into the recommendation model to deal with the data sparsity and cold-start issues. Moreover, the alternating direction optimization method is used for solving the trust-based nonnegative MF model in order to improve convergence speed as well as reduce computational and memory costs. To evaluate the effectiveness of the proposed method, several experiments are performed on three real-world datasets. The obtained results demonstrate the significant improvements of the proposed method over several state-of-the-art methods.