در این پایان نامه، مسئله تجزیه نامنفی ماتریسی با فرض تفکیک پذیری مطالعه می شود. تفکیک پذیری به این معنی است که با زیرمجموعۀ کوچکی از ستون های ماتریس داده های نامنفی ورودی مخروطی شامل تمام ستون ها پدید می آید. این مسئله با ناآمیختگی فراطیفی تحت مدل آمیختگی خطی و فرض عضو خالص معادل است. یک خانواده از الگوریتم های بازگشتی سریع ارائه و ثابت می شود که آنها تحت هرگونه اختلال کوچک در ماتریس داده ورودی استوار هستند. این خانواده چندین الگوریتم ناآمیختگی فراطیفی موجود را تعمیم می دهد و از این رو برای نخستین بار توجیه نظری عملکرد عملی بهتر آن ها را ارائه می دهد.