2024 : 11 : 21
Sadoon Azizi

Sadoon Azizi

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 65456
HIndex:
Faculty: Faculty of Engineering
Address: Room No. 206, Department of Computer Engineering and Information Technology , Faculty of Engineering , University of Kurdistan, Sanandaj, Iran.
Phone:

Research

Title
RESP: A Recursive Clustering Approach for Edge Server Placement in Mobile Edge Computing
Type
JournalPaper
Keywords
Mobile edge computing, edge server placement, recursive clustering, workload balancing, network traffic
Year
2024
Journal ACM Transactions on Internet Technology
DOI
Researchers Ali Akbar Vali ، Sadoon Azizi ، Mohammad Shojafar

Abstract

With the rapid advancement of the Internet of Things and 5G networks in smart cities, the inevitable generation of massive amounts of data, commonly known as big data, has introduced increased latency within the traditional cloud computing paradigm. In response to this challenge, Mobile Edge Computing (MEC) has emerged as a viable solution, offloading a portion of mobile device workloads to nearby edge servers equipped with ample computational resources. Despite significant research in MEC systems, optimizing the placement of edge servers in smart cities to enhance network performance has received little attention. In this article, we propose RESP, a novel Recursive clustering technique for Edge Server Placement in MEC environments. RESP operates based on the median of each cluster determined by the number of base transceiver stations, strategically placing edge servers to achieve workload balance and minimize network traffic between them. Our proposed clustering approach substantially improves load balancing compared to existing methods and demonstrates superior performance in handling traffic dynamics. Through experimental evaluation with real-world data from Shanghai Telecom’s base station dataset, our approach outperforms several representative techniques in terms of workload balancing and network traffic optimization. By addressing the ESP problem and introducing an advanced recursive clustering technique, this work makes a substantial contribution to optimizing mobile edge computing networks in smart cities. The proposed algorithm outperforms alternative methodologies, demonstrating a 10% average improvement in optimizing network traffic. Moreover, it achieves a 53% more suitable result in terms of computational load.