با گسترش سریع تکنولوژی اطلاعات، داده ها عموماً با تعداد ویژگی های زیادی در بسیاری از حوزه ها ظاهر می شوند. این داده ها نه تنها پیچیدگی های محاسباتی و نیازهای حافظه ای الگوریتم-های یادگیری را افزایش می دهند، بلکه عملکرد آن ها را نیز بدتر می کنند؛ به دلیل وجود ویژگی-های غیرمرتبط، افزونه و اختلالی. کاهش ابعاد ویژگی فرایند انتخاب یک زیر مجموعه از ویژگی هایی است که حاوی اطلاعات مفید برای ایجاد مدل هستند، و در الگوریتم های یادگیری ماشین، روشی برای افزایش سرعت الگوریتم و غلبه بر بیش برازش است. در این پایان نامه تمرکز بر روی انتخاب ویژگی از نوع بدون نظارت است که به دلیل نبود برچسب داده ها مسئله چالش برانگیزی است، و روش جدیدی برای انتخاب ویژگی از نوع بدون نظارت ارائه می شود. در روش پیشنهادی، داده ها ی ورودی فاقد برچسب فرض شده اند که این روش در روش پیشنهادی اول از رمزگذار-رمزگشا استفاده می کند؛ به نحوی که از رمزگذار برای تبدیل داده های اصلی به بازنمایی با ابعاد پایین و هم زمان از رمزگشا برای بازسازی داده های اصلی به کمک همان بازنمایی ابعاد پایین استفاده می کند که با این روش نتایج به نسبت برخی روش های مطرح بهبود پیدا کرده اند و در روش پیشنهادی دوم دوم برای بهبود بیشتر و تفکیک بهتر از قید تعامد بر روی بازنمایی داده ها استفاده می شود؛ همچنین اهمیت ساختار محلی نیز به حساب آمده است و در نهایت زیر مجموعه ای از ویژگی ها به کمک خروجی روش که ویژگی های امتیازبندی شده هستند انتخاب می شوند. برای ارزیابی عملکرد روش پیشنهادی، ازآنجاکه الگوریتم پرکاربرد در حوزه داده های بدون برچسب الگوریتم خوشه بندی است، زیر مجموعه ویژگی های به دست آمده در این الگوریتم مورداستفاده قرار می گیرند و با روش های متداول و مورد ارجاع در سایر کارها مقایسه می شوند