2024 : 11 : 21
Raouf Ghavami

Raouf Ghavami

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 55408187000
HIndex:
Faculty: Faculty of Science
Address:
Phone: 08713393265

Research

Title
Semi-Empirical Topological Method for Prediction of the Relative Retention Time of Polychlorinated Biphenyl Congeners on 18 Different HR GC Columns
Type
JournalPaper
Keywords
Gas chromatography, Quantitative structure retention relationship, Environmental analysis, Molecular descriptors and congener identification, Polychlorinated biphenyls
Year
2010
Journal CHROMATOGRAPHIA
DOI
Researchers Raouf Ghavami ، Mohammad Sajadi

Abstract

High resolution gas chromatographic relative retention time (HRGC-RRT) models were developed to predict relative retention times of the 209 individual polychlorinated biphenyls (PCBs) congeners. To estimate and predict the HRGC-RRT values of all PCBs on 18 different stationary phases, a multiple linear regression equation of the form RRT = ao + a1 (no. o-Cl) + a2 (no. m-Cl) + a3 (no. p-Cl) + a4 (VM or SM) was used. Molecular descriptors in the models included the number of ortho-, meta-, and para-chlorine substituents (no. o-Cl, m-Cl and p-Cl, respectively), the semi-empirically calculated molecular volume (VM), and the molecular surface area (SM). By means of the final variable selection method, four optimal semi-empirical descriptors were selected to develop a QSRR model for the prediction of RRT in PCBs with a correlation coefficient between 0.9272 and 0.9928 and a leave-one-out cross-validation correlation coefficient between 0.9230 and 0.9924 on each stationary phase. The root mean squares errors over different 18 stationary phases are within the range of 0.0108–0.0335. The accuracy of all the developed models were investigated using crossvalidation leave-one-out (LOO), Y-randomization, external validation through an odd–even number and division of the entire data set into training and test sets.