2024 : 11 : 21
Raouf Ghavami

Raouf Ghavami

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 55408187000
HIndex:
Faculty: Faculty of Science
Address:
Phone: 08713393265

Research

Title
Predictive and Descriptive CoMFA Models: The Effect of Variable Selection
Type
JournalPaper
Keywords
CoMFA, variable selection, UVE-PLS, IVE-PLS, SPA-jackknife, FFD, SRD, D-optimal design.
Year
2018
Journal COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING
DOI
Researchers sepehri bakhtyar ، Nematollah Omidikia ، Mohsen Kompany-Zareh ، Raouf Ghavami

Abstract

Abstract: Aims & Scope: In this research, 8 variable selection approaches were used to investigate the effect of variable selection on the predictive power and stability of CoMFA models. Materials & Methods: Three data sets including 36 EPAC antagonists, 79 CD38 inhibitors and 57 ATAD2 bromodomain inhibitors were modelled by CoMFA. First of all, for all three data sets, CoMFA models with all CoMFA descriptors were created then by applying each variable selection method a new CoMFA model was developed so for each data set, 9 CoMFA models were built. Obtained results show noisy and uninformative variables affect CoMFA results. Based on created models, applying 5 variable selection approaches including FFD, SRD-FFD, IVE-PLS, SRD-UVEPLS and SPA-jackknife increases the predictive power and stability of CoMFA models significantly. Result & Conclusion: Among them, SPA-jackknife removes most of the variables while FFD retains most of them. FFD and IVE-PLS are time consuming process while SRD-FFD and SRD-UVE-PLS run need to few seconds. Also applying FFD, SRD-FFD, IVE-PLS, SRD-UVE-PLS protect CoMFA countor maps information for both fields.