بررسی ارتباط بین یک یا چند عامل روی متغیر پاسخ در آمار دارای اهمیت فراوانی است. در بسیاری از روشهای موجود، میانگین شرطی متغیر پاسخ با در نظر گرفتن تابعی خطی از متغیرهای توضیحی مدلبندی میشود. ایده استفاده از یک روش غربالگری گروهی برای شناسایی عوامل مهم با استفاده از آزمایشهای کوچک طراحی شده، توسط واتسون )1961 )شرح داده شد. هم اکنون نیز غربالگری گروهی در زمینه- های مختلف علمی و مهندسی کاربرد دارد. در برنامههای آزمایشی که شامل تعداد زیادی از عوامل کنترل پذیر است، یکی از اولین اهداف، شناسایی زیرمجموعه عواملی است که تاثیر بسزایی در پاسخ دارند. از اینرو آزمایشهای غربالگری انجام میشود نه برای ارایه برآوردهای قطعی پارامترها بلکه برای شناسایی پارامترهایی که ابتدا باید برآورد شوند. استفاده از غربالگری این امکان را فراهم میآورد که اثر عاملها در پاسخ مورد بررسی قرار گیرد و در نتیجه تحلیل کاملتری نسبت به رگرسیون خطی ارائه میشود. در فصل اول این پایاننامه چهارچوب طرحهای عاملی و کسری و غربالگری توضیحات کلی داده میشود. در فصل دوم یک خانواده جدید از غربالگری با عنوان غربالگری بیزی را پوشش میدهیم و به کمک آن به بررسی میزان اثر عاملهای اصلی و اثرات متقابل بطور همزمان روی پاسخ میپردازیم این خانواده جدید از غربالگری معایب دیگر روشهای غربالگری از جمله: رویکرد رگرسیون گام بهگام حمادا و وو همچنین رویکرد همهی زیرمجموعه های فورنیوال و ویلسون را برطرف میکند. در روش بیزی به کمک دو طرح غربالگری گروهی و طرحهای فوقاشباع و با استفاده از دو استراتژی انتخاب مدل بیزی و متوسطگیری مدل بیزی، مدل مطلوب و نهایتا عاملهای مهم را به کمک چهار معیار خطای نوع اول، نرخ کشف نادرست، اختالف اندازه مجموعههای فعال و حساسیت تخمین میزنیم. برای برآورد پارامترها نیز در طرح فوق اشباع از روش کمترین مربعات و برای برآورد پارامترهای در طرح غربالگری گروهی از روش نمونهگیری گیبس بهره میبریم. در پایان به کمک انجام 500 نمونه شبیه سازی شده، بطور تقریبی برتری هر یک از چهار روش بیزی شامل BM-S( طرح فوق اشباع با استفاده از استراتژی انتخاب مدل بیزی( ,BA-S( طرح فوق اشباع با استفاده از استراتژی متوسطگیری بیزی( ,BM-G( غربالگری گروهی با استفاده از استراتژی انتخاب مدل بیزی( ,BA-G( غربالگری گروهی با استفاده از استراتژی متوسطگیری مدل بیزی( را بررسی کردیم. با بررسی تمام نمودارهای بدست آمده از هر شبیه سازی، نتایج نشان میدهد که اگر از طرح فوق اشباع استفاده کنیم روش BM-S صرف نظر از تعداد عوامل و مقادیر دیگر پارامترهای شبیه سازی، تمایل به عملکرد خوب دارد. اگر از غربالگری گروهی استفاده کنیم روش BA-G صرف نظر از تعداد عوامل و مقادیر دیگر پارامترهای شبیه سازی، تمایل به عملکرد خوب دارد. زیرا کمترین میزان کشف نادرست و کمترین اختلاف اندازه مجموعه های فعال را دارد و همچنین میزان خطای نوع اول آن کمترین میزان بوده در مقابل بیشترین میزان حساسیت را دارد. غربالگری گروهی )BA-G, BM-G )حساسیت کمتری نسبت به طرح فوق اشباع با استفاده از دو استراتژی انتخاب مدل بیزی و متوسطگیری مدل بیزی دارد. زیرا میانه تقریبا نزدیک دادههای پرت تعیین شده که ناشی از پراکندگی زیاد دادهها است. معمول حساسیت بالا باعث بیش برازش مدل میشود، یعنی ما اثراتی را به عنوان فعال، تعیین و وارد مدل کردهایم که در واقع نباید وارد مدل میکردیم. از پیامدهای مدل فرابرازش در اینجا این است که سبب افزایش واریانس مدل پیشبینی میشود. افزایش واریانس به معنای افزایش پراکندگی است که یکی از معیارها برای بررسی کفایت مدل است بنابراین افزایش واریانس به نفع نیست. در این حالت میزان خطای نوع اول و FDR هم صفر نیست زیرا هنگامی که با بیش برازش مدل مواجه میشویم به این معنا خواهد بود که آن دسته از اثراتی که ما به مدل اضافه کردهایم سهمی کم یا بدون اثر داشته است.